viernes, 15 de julio de 2011

PETROLEUM WELL CONSTRUCTION.



CONTENIDO DEL LIBRO:


  • Introduction to Drilling and Well Completions.


TIPO DE ARCHIVO: Pdf.



PAGINAS: 611 pags.



TAMAÑO: 150 MB.



DESCARGA EN FREAKSHARE:

PETROLEUM ENGINEERING HANDBOOK - RESERVOIR ENGINEERING AND PETROPHYSICS - LARRY W. LAKE & EDWARD D. HOLSTEIN - SOCIETY OF PETROLEUM ENGINEERS SPE.




CONTENIDO DEL LIBRO:


  • Reservoir Geology.

  • Fundamentals of Geophysics.

  • Petrophysics.

  • Resistivity and SP Logging.

  • Acoustic Logging.

  • Nuclear Logging.

  • Nuclear Magnetic Resonance Applications in Petrophysics and Formation Evaluation.

  • Mud Logging.

  • Specialized Well-Logging Topics.

  • Petrophysical Applications.

  • Production Logging.

  • The Single-Well Chemical Tracer Test-A Method for Measuring Reservoir Fluid Saturations in Situ.

  • Well-to-Well Tracer Test.

  • Reservoir Pressure and Temperature.

  • Fluid Flow Through Permeable Media.

  • Oil Reservoir Primary Drive Mechanisms.

  • Gas Reservoir.

  • Waterflooding.

  • Inmiscible Gas Injection in Oil Reservoirs.

  • Polymers, Gel, Foams and Resins.

  • Miscible Processes.

  • Thermal Recovery by Steam Injection.

  • In-Situ Combustion.

  • Reservoir Simulation.

  • Estimation of Primary Reserves of Crude Oil, Natural Gas and Condensate.

  • Valuation of Oil and Gas Reserves.

  • Reservoir Management Programs.

AUTOR: Larry W. Lake & Edward D. Holstein.


TIPO DE ARCHIVO: Pdf.


PAGINAS: 1659 pags.


TAMAÑO: 103 MB.


DESCARGA EN FREAKSHARE:


jueves, 7 de julio de 2011

SURGE AND SWAB CALCULATION METHOD 1.

This is the first method to determine surge and swab pressure.



Surge is additional pressure due to pipe movement downward and swab is reduction of pressure due to upward movement of drill string.







Bottom hole pressure is reduced due to swabbing effect.







Bottom hole pressure is increased due to surging effect.



The calculation steps are as follows:


1. Determine pressure around drill pipe
2. Determine pressure loss around drill collar
3. Determine total pressure loss by summation of the figures in the 1st and 2nd step
4. Determine surge and swab pressure


The First Step: determine pressure loss around drill pipe.

1. Determine n:





Where:


n is the power law exponent.
Θ600 is a value at 600 viscometer dial reading.
Θ300 is a value at 300 viscometer dial reading.


2. Determine K


Where:
K is the fluid consistency unit
Θ300 is a value at 300 viscometer dial reading.
n is the power law exponent.


3. Determine fluid velocity around drill pipe


For closed-ended pipe (plugged flow):


For open-ended pipe:

Where:

Vdp is the fluid velocity around drill pipe in ft/min.
Dp is drill pipe diameter in inch.
Dh is hole diameter in inch.
Di is inner diameter of drill pipe in inch.

4. Maximum pipe velocity


Vm = Vdp x 1.5
Where;
Vdp is the fluid velocity around drill pipe in ft/min.
Vm is maximum pipe velocity.


5. Pressure loss around drill pipe


The Second Step: determine pressure loss around drill collar.

You also need to consider pressure loss around drill collar or BHA as well because they have different OD which sometimes creates significant surge/swab pressure.


1. Determine fluid velocity around drill collar


For close-ended pipe (plugged flow)


For open-ended pipe

Where:

Vdc is the fluid velocity around drill collar in ft/min.
Dc is drill collar diameter in inch.
Dh is hole diameter in inch.
Dci is inner diameter of drill collar in inch.


2. Maximum pipe velocity


Vm = Vdc x 1.5
Where:
Vdc is the fluid velocity around drill collar in ft/min.
Vm is maximum pipe velocity.


3. Pressure loss around drill collar



The Third Step: Total Pressure Loss = Pdp + Pdc

The Final Step:

For surge pressure, you need to add this figure to hydrostatic pressure of mud.

Bottom hole pressure = Hydrostatic pressure + Total Pressure Loss

On the other hand, if you want to get swab pressure, the pressure sure must be subtracted from the hydrostatic pressure.

Bottom hole pressure = Hydrostatic pressure – Total Pressure Loss


CUTTING SLIP VELOCITY CALCULATION METHOD 2

This is another method to determine cutting slip velocity. The process of calculation is quite different from the first method however it is still straight forward calculation. It still gives you the following answers: annular velocity, cutting slip velocity and net velocity.



Let’s get started with this calculation method.



1. Determine n:

Where: n is the power law exponent.
Θ600 is a value at 600 viscometer dial reading.
Θ300 is a value at 300 viscometer dial reading.



2. Determine K:
Where:

K is the fluid consistency unit
Θ300 is a value at 300 viscometer dial reading.
n is the power law exponent.


3. Determine annular velocity with following equation:
Where:


AV is annular velocity in ft/min.
Q is flow rate in gpm (gallon per minute).
Dh is diameter of hole in inch.
Dp is diameter of drill pipe in inch.



4. Determine cutting slip velocity with following equation:
Where:

Vs is cutting slip velocity in ft/min.
PV is plastic viscosity in centi-poise.
MW is mud weight in ppg.
Dp is diameter of cutting in inch.
DenP is cutting density in ppg.


5. Determine net rise velocity with following equation:


Net rise velocity = AV – Vs


Where:


AV is annular velocity.
Vs Cutting Velocity


This figure indicates that cuttings are being lifted by mud or are still falling down.
If net rise velocity is positive, it means that you have good flow rate which can carry cuttings in the wellbore.


On the other hand, If net rise velocity is negative, your current flow rate is NOT engough to carry cuttings.


Example: Please use the following information to determine annular velocity, cutting slip velocity, net rise velocity, and tell us if the flow rate is good for hole cleaning.

Flow rate = 300 gpm
Hole Diameter = 6.3 inch
Drillpipe OD = 4 inch
PV = 15 cps
MW = 10 ppg
Diameter of cutting = 0.20 inch
Density of cutting = 20.0 ppg

1. Determine annular velocity:


AV = 310.3 ft/min

2. Determine cutting slip velocity:



Vs = 35.4 ft/min

3. Determine net rise velocity with following equation:

Net rise velocity = 310.3 – 35.4 = 274.9 ft/min

Conclusion: This flow rate is good for hole cleaning because annular velocity is more than cutting slip velocity.

miércoles, 6 de julio de 2011

NINE STEPS ESP DESIGN - BAKER HUGHES COMPANY CENTRILIFT.

Nueve pasos fundamentales para el diseño de Sistemas de Bombeo Electrosumergible (Electrical Submersible Pumping - ESP). Espero sea lo que buscabas amigo Steven.



CONTENIDO DEL LIBRO:


  • Nine Step Overview.


  • Step 1.- Basic Data.


  • Step 2.- Production Capacity.


  • Step 3.- Gas Calculations.


  • Step 4.- Total Dynamic Head.


  • Step 5.- Pump Type.

  • Step 6.- Optimum Size of Components.


  • Step 7.- Electric Cable.


  • Step 8.- Accessory Optional Equipment.

  • Step 9.- Variable Speed Pumping System.
TIPO DE ARCHIVO: Pdf.

AUTOR: Baker Hughes Company - Centrilift.

IDIOMA: Ingles.

PAGINAS: 33 pags.

TAMAÑO: 7.55 MB.

DESCARGA EN MEDIAFIRE:

lunes, 4 de julio de 2011

WELL CONTROL SCHOOL (EN INGLES) - WCS

A pedido de nuestro amigo Alberdi Soria Alvarez ahi esta el manual de Well Control en Ingles, esta en una sola descarga pues ahi hay 2 archivos con los 19 capitulos que consta el manual, espero te sirva, saludos.






CONTENIDO DEL LIBRO:



TIPO DE ARCHIVO: Pdf.


PAGINAS: 716 pags.


TAMAÑO: 124 MB.


COMPRESION: .rar


DESCARGA EN FREAKSHARE:

jueves, 16 de junio de 2011

DICCIONARIO OCEANO ENGLISH SPANISH - ESPAÑOL INGLES

Diccionario Interactivo donde podras encontrar cientos de palabras y algunas lecciones sobre Ingles y Español.. muy util y facil de usar.. me vino en un libro este es el CD-Room que venia ahi... espero les sirva.

Para ejecutarlo descomprima la carpeta .rar y ejecuter el archivo de nombre: diccionario (de tipo aplicacion).


TIPO DE ARCHIVO: .exe

TAMAÑO: 45.65 MB.

DESCARGA EN MEGAUPLOAD:

miércoles, 25 de mayo de 2011

CALCULADORA GRAFICA HP 50G (GRAPHING CALCULATOR HP 50G).

Emulador de calculadora grafica HP 50g, muy util para calculos de ingenieria, espero les guste y les sea util. El ultimo link es para descargar el Manual y Guia del Usuario de la Calculadora.


Como ejecutarlo:
  1. Descarga el archivo.
  2. Descomprime el archivo .rar
  3. Abre la carpeta: "Emulador Calculadora hp 50g".
  4. Ejecuta el archivo de aplicacion de nombre: "emu48.exe"
  5. Seguir los pasos como muestra la imagen.
TIPO DE ARCHIVO: .rar

TAMAÑO: 1.75 MB.

DESCARGA EN MEGAUPLOAD:


Descarga el Manual y Guia de Usuario de la Calculadora (9.85 MB), AQUI:

miércoles, 11 de mayo de 2011

ANALISIS DE PRESION (BUILD UP) - UNIVERSIDAD CENTRAL DE VENEZUELA - GUSTAVO BERMUDEZ .

Video de la Universidad Central de Venezuela (Escuela de Petroleo) sobre analisis o pruebas presion (Build Up), que es? para que sirven? en que se basa? tipos de pruebas, sus objetivos y mas.. video en español.

sábado, 30 de abril de 2011

DISCOVERY CHANNEL: TESORO BAJO LA SAL - DESAFIO DE BRASIL.

El descubrimiento de pre-sal en la costa de brasil está considerado uno de los grandes acontecimientos de la industria petrolífera. si hay el potencial de 100 billones de barriles, estamos hablando de tener prácticamente un irak en la costa brasilera.

Este documental muestra la capacidad tecnológica que ha desarrollado Brasil para encontrar estas zonas petrolíferas en el mar, cuenta este país con laboratorios sostificados que le permiten simular los diferentes fenómenos que se dan al estar tan alejados de la costa y al tratar de perforar altas profundidades, además las condiciones ambientales son extremas lo que aumenta el riesgo de cualquier accidente y Petrobras cuenta con las herramientas para afrontar esta adversidades.

"Brasil está entre uno de los mayores productores de petróleo en aguas profundas del mundo y está por convertirse en el único país en extraerlo a 7000 metros bajo el mar.

El Tesoro Bajo la Sal explica cómo funciona esta innovadora forma de exploración y producción de petróleo. Con grandes riesgos y costos asociados, ¿será este mega-proyecto viable y realmente beneficioso para la sociedad? Presencia el documental para descubrir cómo los especialistas planean superar todas las barreras, utilizando la más innovadora tecnología para realizar un nuevo avance histórico."

MODERN CHEMICAL ENHANCED OIL RECOVERY - JAMES J. SHENG.

Today fossil fuels supply more than 85% of the world’s energy. Currently, we
are producing roughly 87 million barrels per day—32 billion barrels per year
in the world. That means every year the industry has to find twice the remaining
volume of oil in the North Sea just to meet the target to replace the depleted
reserves. Of the 32 billion barrels produced each year, almost 22 billion come
out of sandstone reservoirs. The reserves and production ratios in sandstone
fields have around 20 years of production time left. The proven and probable
reserves in carbonate fields have around 80 years of production time left (Montaron,
2008). With global energy demand and consumption forecast to grow
rapidly during the next 20 years, a more realistic solution to meet this need lies
in sustaining production from existing fields for several reasons:
● The industry cannot guarantee new discoveries.
● New discoveries are most likely to lie in offshore, deep offshore, or difficultto-
produce areas.
● Producing unconventional resources would be more expensive than producing
from existing brown fields by enhanced oil recovery (EOR) methods.


CONTENIDO DEL LIBRO:

● Chapter 1: introduces general EOR and how this book is organized.
● Chapter 2: discusses the fundamentals of chemical transport and fractional
flow analysis.
● Chapter 3: reviews salinity and ion exchange, and the effect of salinity on
waterflooding.
● Chapter 4: proposes a new mobility control requirement for enhanced oil
recovery processes.
● Chapter 5: presents fundamentals and field practices of polymer flooding.
● Chapter 6: reviews polymer viscoelastic behavior.
● Chapter 7: discusses the fundamentals, concepts, and issues related to surfactant
flooding.
● Chapter 8: proposes new concepts of optimum salinity type and optimum
salinity profile in surfactant flooding.
● Chapter 9: discusses surfactant-polymer interactions.
● Chapter 10: presents the fundamentals and modeling of alkaline flooding.
● Chapter 11: discusses alkaline-polymer interactions.
● Chapter 12: discusses alkaline-surfactant synergy.
● Chapter 13: focuses on emulsion and ASP field applications.

TIPO DE ARCHIVO: Pdf.

IDIOMA: Ingles.

AUTOR: James J. Sheng.

PAGINAS: 630 pags.

TAMAÑO: 6.11 MB.

DESCARGA EN MEGAUPLOAD:

MECHANICS OF OFFSHORE PIPELINES VOLUME 1 BUCKLING AND COLLAPSE - STELIOS KYRIAKIDES & EDMUNDO CORONA.

Although offshore oil and gas production was conducted throughout the entire 20th century,
the industry’s modern importance and vibrancy did not start until the early 1970s,
when the North Sea became a major producer. Since then, the expansion of the offshore
oil industry into many parts of the world has been both continuous and rapid. This growth
has been coupled with a gradual movement to increasingly deeper waters, where today
production has reached approximately 7,000 ft (2,130 m) while exploration is proceeding
as deep as 10,000 ft (3,050 m).
Pipelines, and more generally long tubular structures, are major oil and gas industry
tools used in exploration, drilling, production, and transmission. Installing and operating
tubular structures in deep waters places unique demands on them. The high pressures
and elevated temperatures of the oil wells, the high ambient external pressures, the large
forces involved during installation, and generally the hostility of the environment can
result in a large number of limit states that must be addressed.
The technical challenges of the field have spawned significant research.




CONTENIDO DEL LIBRO:
  1. Introduction.
  2. Offshore Facilities and Pipeline Installation Methods.
  3. Pipe and Tube Manufacturing Processes.
  4. Buckling and Collapse Under External Pressure.
  5. Collapse of UOE Pipe Under External Pressure.
  6. Collapse of Dented Pipes Under External Pressure.
  7. Buckling and Collapse Under Combined External Pressure
    and Tension.
  8. Inelastic Response, Buckling and Collapse Under Pure Bending.
  9. Buckling and Collapse Under Combined Bending and
    External Pressure.
  10. Inelastic Response Under Combined Bending and Tension.
  11. Plastic Buckling and Collapse Under Axial Compression.
  12. Combined Internal Pressure and Axial Compression.
  13. Elements of Plasticity Theory.
  14. Appendix A: Mechanical Testing.
  15. Appendix B: Plastic Anisotropy in Tubes.
  16. Appendix C: The Ramberg–Osgood Stress–Strain Fit.
  17. Appendix D: Sanders’ Circular Cylindrical Shell Equations.
  18. Appendix E: Stress–Strain Fitting for the Dafalias–Popov Model.
  19. Appendix F: Stress–Strain Fitting for the Tseng–Lee Model.
  20. Appendix G: Glossary and Nomenclature.
  21. Appendix H: Units and Conversions.
TIPO DE ARCHIVO: Pdf.

IDIOMA: Ingles.

PAGINAS: 415 pags.

TAMAÑO: 8.13 MB.

DESCARGA EN MEGAUPLOAD:

jueves, 17 de marzo de 2011

CHEMISTRY OF PETROCHEMICAL PROCESSES - SAMI MATAR & LEWIS F. HATCH.


CONTENIDO DEL LIBRO:

CHAPTER ONE: Primary Raw Materials for Petrochemicals
1.1 Introduction
1.2 Natural Gas
Natural Gas Treatment Processes, Natural Gas Liquids, Properties of Natural Gas
1.3 Crude Oils
Composition of Crude Oils, Properties of Crude Oils, Crude Oil Classification
1.4 Coal, Oil Shale, Tar Sand, and Gas Hydrates

CHAPTER TWO: Hydrocarbon Intermediates
2.1 Introduction
2.2 Paraffinic Hydrocarbons
Methane, Ethane, Propane, Butanes
2.3 Olefinic Hydrocarbons
Ethylene, Propylene, Butylenes
2.4 Dienes
Butadiene, Isoprene
2.5 Aromatic Hydrocarbons
Extraction of Aromatics
2.6 Liquid Petroleum Fractions and Residues
Naphtha, Kerosine, Gas Oil, Residual Fuel Oil

CHAPTER THREE: Crude Oil Processing and Production of Hydrocarbon Intermediates
3.1 Introduction
3.2 Physical Separation Processes
Atmospheric Distillation, Vacuum Distillation, Absorption Process, Adsorption Process, Solvent Extraction
3.3 Conversion Processes
Thermal Conversion Processes, Catalytic Conversion Processes
3.4 Production of Olefins
Steam Cracking of Hydrocarbons, Production of Diolefins

CHAPTER FOUR: Nonhydrocarbon Intermediates
4.1 Introduction
4.2 Hydrogen
4.3 Sulfur
Uses of Sulfur, The Claus Process, Sulfuric Acid
4.4 Carbon Black
The Channel Process, The Furnace Black Process, The Thermal Process, Properties and Uses of Carbon Black
4.5 Synthesis Gas
Uses of Synthesis Gas
4.6 Naphthenic Acids
Uses of Naphthenic Acid and Its Salts
4.7 Cresylic Acid
Uses of Cresylic Acid

CHAPTER FIVE: Chemicals Based on Methane
5.1 Introduction
5.2 Chemicals Based on Direct Reactions of Methane
Carbon Disulfide, Hydrogen Cyanide, Chloromethanes
5.3 Chemicals Based on Synthesis Gas
Ammonia, Methyl Alcohol, Oxo Aldehydes and Alcohols, Ethylene Glycol

CHAPTER SIX: Ethane and Higher Paraffins-Based Chemicals
6.1 Introduction
6.2 Ethane Chemicals
6.3 Propane Chemicals
Oxidation of Propane, Chlorination of Propane, Dehydrogenation of Propane, Nitration of Propane
6.4 n-Butane Chemicals
Oxidation of n-Butane, Aromatics Production, Isomerization of n-Butane
6.5 Isobutane Chemicals
6.6 Naphtha-Based Chemicals
6.7 Chemicals from High Molecular Weight n-Paraffins
Oxidation of Paraffins, Chlorination of n-Paraffins, Sulfonation of n-Paraffins, Fermentation Using n-Paraffins

CHAPTER SEVEN: Chemicals Based on Ethylene
7.1 Introduction
7.2 Oxidation of Ethylene
Derivatives of Ethylene Oxide, Acetaldehyde, Oxidative Carbonylation of Ethylene
7.3 Chlorination of Ethylene
Vinyl Chloride, Perchloro- and Trichloroethylene
7.4 Hydration of Ethylene
7.5 Oligomerization of Ethylene
Alpha Olefins Production, Linear Alcohols, Butene-l
7.6 Alkylation Using Ethylene

CHAPTER EIGHT: Chemicals Based on Propylene
8.1 Introduction
8.2 Oxidation of Propylene
Acrolein, Mechanism of Propene Oxidation, Acrylic Acid, Ammoxidation of Propylene, Propylene Oxide
8.3 Oxyacylation of Propylene
8.4 Chlorination of Propylene
8.5 Hydration of Propylene
Properties and Uses of Isopropanol
8.6 Addition of Organic Acids to Propene
8.7 Hydroformylation of Propylene: The Oxo Reaction
8.8 Disproportionation of Propylene (Metathesis
8.9 Alkylation Using Propylene

CHAPTER NINE: C4 Olefins and Diolefins-Based Chemicals
9.1 Introduction
9.2 Chemicals from n-Butenes
Oxidation of Butenes, Oligomerization of Butenes
9.3 Chemicals from Isobutylene
Oxidation of Isobutylene, Epoxidation of Isobutylene, Addition of Alcohols to Isobutylene, Hydration of Isobutylene, Carbonylation of Isobutylene, Dimerization of Isobutylene
9.4 Chemicals from Butadiene
Adiponitrile, Hexamethylenediamine, Adipic Acid, Butanediol, Chloroprene, Cyclic Oligomers of Butadiene

CHAPTER TEN: Chemicals Based on Benzene, Toluene, and Xylenes
10.1 Introduction
10.2 Reactions and Chemicals of Benzene
Alkylation of Benzene, Chlorination of Benzene, Nitration of Benzene, Oxidation of Benzene, Hydrogenation of Benzene
10.3 Reactions and Chemicals of Toluene
Dealkylation of Toluene, Disproportionation of Toluene, Oxidation of Toluene, Chlorination of Toluene, Nitration of Toluene, Carbonylation of Toluene
10.4 Chemicals from Xylenes
10.5 Terephthalic Acid, Phthalic Anhydride, Isophthalic Acid

CHAPTER ELEVEN: Polymerization
11.1 Introduction
11.2 Monomers, Polymers, and Copolymers
11.3 Polymerization Reactions
Addition Polymerization, Condensation Polymerization, Ring Opening Polymerization
11.4 Polymerization Techniques
11.5 Physical Properties of Polymers
Crystallinity, Melting Point, Viscosity, Molecular Weight, Classification of Polymers

CHAPTER TWELVE: Synthetic Petroleum-Based Polymers
12.1 Introduction
12.2 Thermoplastics
Polyethylene, Polypropylene, Polyvinyl Chloride, Polystyrene, Nylon Resins, Thermoplastic Polyesters, Polycarbonates, Polyether Sulfones, Poly(phenylene) Oxide, Polyacetals
12.3 Thermosetting Plastics
Polyurethanes, Epoxy Resins, Unsaturated Polyesters, Phenol-Formaldehyde Resins, Amino Resins
12.4 Synthetic Rubber
Butadiene Polymers and Copolymers, Nitrile Rubber, Polyisoprene, Polychloroprene, Butyl Rubber, Ethylene Propylene Rubber, Thermoplastic Elastomers
12.5 Synthetic Fibers
Polyester Fibers, Polyamides, Acrylic and Modacrylic Fibers, Carbon Fibers, Polypropylene Fibers

Appendix One: Conversion Factors
Appendix Two: Selected Properties of Hydrogen, Important C1–C10 Paraffins, Methylcyclopentane, and Cyclohexane

TIPO DE ARCHIVO: Pdf.

PAGINAS: 405 pags.

TAMAÑO: 4.98 MB.

DESCARGA EN MEGAUPLOAD:

lunes, 28 de febrero de 2011

CALCULOS DE IPR (INFLOW PERFORMANCE RELATIONSHIP)

El potencial productivo de un reservorio de hidrocarburos puede ser representado a partir de la relación que existe entre el caudal de fluido que puede aportar y la presión dinámica del mismo. Así mismo la representación de cada uno de estos puntos la denominamos IPR (Inflow Performance Relationship) y es de suma importancia a la hora de evaluar el potencial y la capacidad de producción de distintos reservorios.

La siguiente planilla de cálculo, en su primera versión, les ofrece una herramienta simple y aproximada para poder representar los IPR en condiciones de flujo monofásico (Darcy Analítico y empírico), flujo bifásico en reservorios saturados (Vogel) y la combinación de Vogel-Darcy para el caso de reservorios Sub-saturados donde las presiones dinámicas bajan por debajo de la presión de burbuja.

CONTENIDO DE LA PLANTILLA:
  1. Calculo de IPR Darcy - Metodo Analitico.
  2. Calculo de IPR Darcy - Metodo Empirico.
  3. Calculo de IPR Darcy - Metodo Empirico.
  4. CAlculo de IPR Vogel.
  5. Calculo IPR Vogel Darcy - Metodo Combinado.
TIPO DE ARCHIVO: Excel.

TAMAÑO: 215 KB.

DESCARGA EN MEGAUPLOAD:

jueves, 17 de febrero de 2011

APLICACION DE LA ECUACION DE BALANCE DE MATERIALES PARA YACIMIENTOS SUBSATURADOS - EJERCICIO.

Partiendo de la ecuación general de balance de materiales, demuestre la ecuación de balance de materiales para yacimientos subsaturados.

Solucion:

Se pide demostrar la Ecuación de Balance de Materiales para Yacimientos Subsaturados, así pues la Ecuación General de Balance de Materiales viene dada por:


Siendo un yacimiento subsaturado no se ha llegado a la presión de burbujeo, por tanto no se tiene presente capa de gas, todo el gas está disuelto en el petróleo; adicionalmente se asumirá el acuífero como poco representativo y se despreciará la producción de agua, así pues:

m = 0XXXXXRp = RsXXXXXRsi – Rs = 0

We = 0XXXXXWp = 0

Tal que:


Quedando la Ecuación de Balance de Materiales reducida a:


Multiplicando y dividiendo por Boi:


Se sabe que la compresibilidad viene dada por:


Derivando:


Aplicándolo a la compresibilidad del petróleo:


Despejando:


Sustituyendo este factor en la ecuación reducida:


Sacando factor común N Boi ∆P:


El término siguiente es constante y lo podemos denotar como Ce:


Sustituyéndolo en la ecuación:


Esta vendria a ser la Ecuación de Balance de Materiales Simplificada para un Yacimiento Subsaturado.