
- Introduction to Drilling and Well Completions.
Bottom hole pressure is reduced due to swabbing effect.
Bottom hole pressure is increased due to surging effect.
The calculation steps are as follows:
1. Determine pressure around drill pipe
2. Determine pressure loss around drill collar
3. Determine total pressure loss by summation of the figures in the 1st and 2nd step
4. Determine surge and swab pressure
The First Step: determine pressure loss around drill pipe.
1. Determine n:
Where:
n is the power law exponent.
Θ600 is a value at 600 viscometer dial reading.
Θ300 is a value at 300 viscometer dial reading.
2. Determine K
3. Determine fluid velocity around drill pipe
For closed-ended pipe (plugged flow):
Vm = Vdp x 1.5
Where;
Vdp is the fluid velocity around drill pipe in ft/min.
Vm is maximum pipe velocity.
5. Pressure loss around drill pipe
1. Determine fluid velocity around drill collar
For close-ended pipe (plugged flow)
2. Maximum pipe velocity
Vm = Vdc x 1.5
Where:
Vdc is the fluid velocity around drill collar in ft/min.
Vm is maximum pipe velocity.
3. Pressure loss around drill collar
The Third Step: Total Pressure Loss = Pdp + Pdc
The Final Step:
For surge pressure, you need to add this figure to hydrostatic pressure of mud.
Bottom hole pressure = Hydrostatic pressure + Total Pressure Loss
On the other hand, if you want to get swab pressure, the pressure sure must be subtracted from the hydrostatic pressure.
Bottom hole pressure = Hydrostatic pressure – Total Pressure Loss
1. Determine n:
2. Determine K:Where:
4. Determine cutting slip velocity with following equation: Where:
AV = 310.3 ft/min
Vs = 35.4 ft/min
El descubrimiento de pre-sal en la costa de brasil está considerado uno de los grandes acontecimientos de la industria petrolífera. si hay el potencial de 100 billones de barriles, estamos hablando de tener prácticamente un irak en la costa brasilera.
Este documental muestra la capacidad tecnológica que ha desarrollado Brasil para encontrar estas zonas petrolíferas en el mar, cuenta este país con laboratorios sostificados que le permiten simular los diferentes fenómenos que se dan al estar tan alejados de la costa y al tratar de perforar altas profundidades, además las condiciones ambientales son extremas lo que aumenta el riesgo de cualquier accidente y Petrobras cuenta con las herramientas para afrontar esta adversidades.
"Brasil está entre uno de los mayores productores de petróleo en aguas profundas del mundo y está por convertirse en el único país en extraerlo a 7000 metros bajo el mar.
El Tesoro Bajo la Sal explica cómo funciona esta innovadora forma de exploración y producción de petróleo. Con grandes riesgos y costos asociados, ¿será este mega-proyecto viable y realmente beneficioso para la sociedad? Presencia el documental para descubrir cómo los especialistas planean superar todas las barreras, utilizando la más innovadora tecnología para realizar un nuevo avance histórico."
CHAPTER ONE: Primary Raw Materials for Petrochemicals
1.1 Introduction
1.2 Natural Gas
Natural Gas Treatment Processes, Natural Gas Liquids, Properties of Natural Gas
1.3 Crude Oils
Composition of Crude Oils, Properties of Crude Oils, Crude Oil Classification
1.4 Coal, Oil Shale, Tar Sand, and Gas Hydrates
CHAPTER TWO: Hydrocarbon Intermediates
2.1 Introduction
2.2 Paraffinic Hydrocarbons
Methane, Ethane, Propane, Butanes
2.3 Olefinic Hydrocarbons
Ethylene, Propylene, Butylenes
2.4 Dienes
Butadiene, Isoprene
2.5 Aromatic Hydrocarbons
Extraction of Aromatics
2.6 Liquid Petroleum Fractions and Residues
Naphtha, Kerosine, Gas Oil, Residual Fuel Oil
CHAPTER THREE: Crude Oil Processing and Production of Hydrocarbon Intermediates
3.1 Introduction
3.2 Physical Separation Processes
Atmospheric Distillation, Vacuum Distillation, Absorption Process, Adsorption Process, Solvent Extraction
3.3 Conversion Processes
Thermal Conversion Processes, Catalytic Conversion Processes
3.4 Production of Olefins
Steam Cracking of Hydrocarbons, Production of Diolefins
CHAPTER FOUR: Nonhydrocarbon Intermediates
4.1 Introduction
4.2 Hydrogen
4.3 Sulfur
Uses of Sulfur, The Claus Process, Sulfuric Acid
4.4 Carbon Black
The Channel Process, The Furnace Black Process, The Thermal Process, Properties and Uses of Carbon Black
4.5 Synthesis Gas
Uses of Synthesis Gas
4.6 Naphthenic Acids
Uses of Naphthenic Acid and Its Salts
4.7 Cresylic Acid
Uses of Cresylic Acid
CHAPTER FIVE: Chemicals Based on Methane
5.1 Introduction
5.2 Chemicals Based on Direct Reactions of Methane
Carbon Disulfide, Hydrogen Cyanide, Chloromethanes
5.3 Chemicals Based on Synthesis Gas
Ammonia, Methyl Alcohol, Oxo Aldehydes and Alcohols, Ethylene Glycol
CHAPTER SIX: Ethane and Higher Paraffins-Based Chemicals
6.1 Introduction
6.2 Ethane Chemicals
6.3 Propane Chemicals
Oxidation of Propane, Chlorination of Propane, Dehydrogenation of Propane, Nitration of Propane
6.4 n-Butane Chemicals
Oxidation of n-Butane, Aromatics Production, Isomerization of n-Butane
6.5 Isobutane Chemicals
6.6 Naphtha-Based Chemicals
6.7 Chemicals from High Molecular Weight n-Paraffins
Oxidation of Paraffins, Chlorination of n-Paraffins, Sulfonation of n-Paraffins, Fermentation Using n-Paraffins
CHAPTER SEVEN: Chemicals Based on Ethylene
7.1 Introduction
7.2 Oxidation of Ethylene
Derivatives of Ethylene Oxide, Acetaldehyde, Oxidative Carbonylation of Ethylene
7.3 Chlorination of Ethylene
Vinyl Chloride, Perchloro- and Trichloroethylene
7.4 Hydration of Ethylene
7.5 Oligomerization of Ethylene
Alpha Olefins Production, Linear Alcohols, Butene-l
7.6 Alkylation Using Ethylene
CHAPTER EIGHT: Chemicals Based on Propylene
8.1 Introduction
8.2 Oxidation of Propylene
Acrolein, Mechanism of Propene Oxidation, Acrylic Acid, Ammoxidation of Propylene, Propylene Oxide
8.3 Oxyacylation of Propylene
8.4 Chlorination of Propylene
8.5 Hydration of Propylene
Properties and Uses of Isopropanol
8.6 Addition of Organic Acids to Propene
8.7 Hydroformylation of Propylene: The Oxo Reaction
8.8 Disproportionation of Propylene (Metathesis
8.9 Alkylation Using Propylene
CHAPTER NINE: C4 Olefins and Diolefins-Based Chemicals
9.1 Introduction
9.2 Chemicals from n-Butenes
Oxidation of Butenes, Oligomerization of Butenes
9.3 Chemicals from Isobutylene
Oxidation of Isobutylene, Epoxidation of Isobutylene, Addition of Alcohols to Isobutylene, Hydration of Isobutylene, Carbonylation of Isobutylene, Dimerization of Isobutylene
9.4 Chemicals from Butadiene
Adiponitrile, Hexamethylenediamine, Adipic Acid, Butanediol, Chloroprene, Cyclic Oligomers of Butadiene
CHAPTER TEN: Chemicals Based on Benzene, Toluene, and Xylenes
10.1 Introduction
10.2 Reactions and Chemicals of Benzene
Alkylation of Benzene, Chlorination of Benzene, Nitration of Benzene, Oxidation of Benzene, Hydrogenation of Benzene
10.3 Reactions and Chemicals of Toluene
Dealkylation of Toluene, Disproportionation of Toluene, Oxidation of Toluene, Chlorination of Toluene, Nitration of Toluene, Carbonylation of Toluene
10.4 Chemicals from Xylenes
10.5 Terephthalic Acid, Phthalic Anhydride, Isophthalic Acid
CHAPTER ELEVEN: Polymerization
11.1 Introduction
11.2 Monomers, Polymers, and Copolymers
11.3 Polymerization Reactions
Addition Polymerization, Condensation Polymerization, Ring Opening Polymerization
11.4 Polymerization Techniques
11.5 Physical Properties of Polymers
Crystallinity, Melting Point, Viscosity, Molecular Weight, Classification of Polymers
CHAPTER TWELVE: Synthetic Petroleum-Based Polymers
12.1 Introduction
12.2 Thermoplastics
Polyethylene, Polypropylene, Polyvinyl Chloride, Polystyrene, Nylon Resins, Thermoplastic Polyesters, Polycarbonates, Polyether Sulfones, Poly(phenylene) Oxide, Polyacetals
12.3 Thermosetting Plastics
Polyurethanes, Epoxy Resins, Unsaturated Polyesters, Phenol-Formaldehyde Resins, Amino Resins
12.4 Synthetic Rubber
Butadiene Polymers and Copolymers, Nitrile Rubber, Polyisoprene, Polychloroprene, Butyl Rubber, Ethylene Propylene Rubber, Thermoplastic Elastomers
12.5 Synthetic Fibers
Polyester Fibers, Polyamides, Acrylic and Modacrylic Fibers, Carbon Fibers, Polypropylene Fibers
Appendix One: Conversion Factors
Appendix Two: Selected Properties of Hydrogen, Important C1–C10 Paraffins, Methylcyclopentane, and Cyclohexane
La siguiente planilla de cálculo, en su primera versión, les ofrece una herramienta simple y aproximada para poder representar los IPR en condiciones de flujo monofásico (Darcy Analítico y empírico), flujo bifásico en reservorios saturados (Vogel) y la combinación de Vogel-Darcy para el caso de reservorios Sub-saturados donde las presiones dinámicas bajan por debajo de la presión de burbuja.
CONTENIDO DE LA PLANTILLA: